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Abstract— Using the description suggested by Sideman for the internal evaporation of a drop with the

.growth of a liquid sheath suspended from the lower part of the expanding bubble, an equation describing

the motion of such a system is derived. The equation is solved numerically, and the results are compared

both with experimental data given in [2] and the authors’ own experimental results. There is good
agreement between experiment and theory.

NOMENCLATURE
B, dimensionless constant;
Cp,  coefficient of frontal resistance, equation (4);
C, constant, equation (7a);

C,,  specific heat of evaporating liquid [ cal }
gdeg

. ., | cm
g acceleration of gravity [T}
5

H, actual position of system [em];
H,, initial'position of system [c¢m];
K, constant in equation (12);
K, coefficient of equation (3);
L, constant of equation (12);

1

L,,  heat of vaporization I:(EJ;
g
(

M, constant of equation (12);
M., molecular mass,

Nja,  Jacob’s number [dimensionless];
. dyn
P, tension of saturated vapour 17 ;
cm
D, dimensionless constant;

Dows internal pressure of bubble {dig],
cm

R, bubble radius [cm];

R*,  effective radius [em];

T, temperature [°K];

to,  starting time of system [s];

v, velocity of system ):CE}
s
Vo,  initial volume of drop [em?].
Greek symbols

2
o, thermal diffusivity [c&],
s

B, opening angle [rad];
@, coefficient;

. dyn
a, surface tension | — |;
cm
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pL.  density of continuous phase [g/cm?];
pr,, density of evaporating liquid [g/cm’];
pe  vapour density [g/cm?].

INTRODUCTION

IN OUR previous work [ 1] dealing with the mechanism
of evaporation of a liquid drop immersed in a super-
heated (with respect to its boiling point) immiscible
liquid medium, we pointed out that depending on the
ratio of surface tensions of both liquids there must be at
least two completely different mechanisms of eva-
poration,

The first is connected with the evaporation of liquid
into a drop which thus takes the shape of a flat sheath
suspended from the expanding vapour bubble, and the
other is connected with the removal of vapour nuclei
from the surface of the superheated drop to the sur-
rounding liquid. Different mechanisms exhibit different
degrees of effectiveness of membraneless heat exchange.
Explanation of the functioning of these mechanisms
might have considerable theoretical and practical im-
portance. The mechanism of internal evaporation of a
drop with the growth of a liquid sheath suspended
from an expanding vapour bubble has been described
by Sideman et al. in several works ([2,3] among others).

Basing on the results of his experimental studies of
the motion of expanding bubbles, Sideman derived
the following empirical formula for the water-pentane

FiG. 1. Expanding vapour

drop: (1)
vapour; (2) evaporating liquid; (3) con-
tinued phase.
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system describing the relationship between position of
the bubble and time:

H:H0+B‘Ip (l)

where H is the position of bubble after time 1, Hy, the
position at the time instant ¢, (separation from the
capillary), 1, time, and B, p are constants.

MATHEMATICAL DESCRIPTION

In this work we attempt to derive analytically the
equation of motion of a system composed of an ex-
panding bubble with a suspended sheath of evaporating
liquid. In order to do this we consider the system as
moving in a uniformly superheated liquid. In accor-
dance with experimental observations, we assume that
the upper part of the system while going upwards has
a spherical shape, and the loading of the suspended
liquid up to about 90, of evaporation prevents the
lower part of the system from being deformed to the
shape of a “mushroom”.

The momentum balance of the moving system:

I T e T 7

hange of ‘ pthrus esistance ‘ Lipparem weigh \
omentum of | = jon the —%f medium —lof suspended |
bubble | Piquid J

roving systemy - pubble 1 |
The momentum of the moving system is made up of
the following components: p,$7R*V, momentum of
vapour bubble: m(t)-V, momentum of suspended
liquid: 3p 37R>V, momentum of external liquid forced
upwards with the bubble [12].

From the above balance we get the following differ-
ential equation:

d
i (p ARV +m()V +3p3nR3V)

oL V2
= (pr—pNinR3g — CpnR? Lr, —g-(pL,—pr)

5
y ( %_.gn(l +cos f)pR E) 2)

where m(t) is the mass of suspended liquid, and f is the
“opening angle” of vapour phase defined in Fig. 1.

The coefficient ¢ in the last part of the equation
determines the quantity of evaporating liquid from unit
surface in unit time for given pressure and tempera-
ture. From the molecular-kinetic theory of gases [4], for
moderate values of external pressure (approaching
atmospheric pressure) the coefficient ¢ can be deter-
mined from the following relationship:

3 \12
P = Kc'Mc:'P'<M-R7> 3)

where M, is the molecular mass of evaporating liquid
and P, the vapour pressure of saturated evaporating
liquid.

Saturated vapour pressure P in the expression (3)
requires further discussion. This pressure is not con-
stant in time. It depends on the surface curvature of
the sheath, that is on the bubble radius and on the
hydrostatic pressure, that is on the position of the
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bubble. The average value of this pressurc, however,
does not differ from the extreme values by more than
107, which gives us the right to assume that over this
range of accuracy the average value of pressure is
constant.

The coefficient of resistance Cj, in the last but one
element of the equation is defined as:

resistance

Co= — = T (4)

As shown in [5], the coefficient Cp is a complex
function of a number of parameters. Some cases of
motion of systems with regular shapes have been solved.
For large bubbles (R > 0.07 cm) whose shape in nearly
spherical, it is most convenient to determine the co-
efficient of resistance from the relationship given in
[6.7]. that is:

b
CD—S,‘,L“’,RZ (

=5 . 5
Y1820 )

where o is the surface tension at the bubble-surrounding
liquid boundary.

In order to solve equation (2) the rate of change of
the bubble radius should also be determined.

The temperature conditions in the sheath of the eva-
porating liquid can be regarded as fixed. One can,
therefore, describe the growth of this bubble by means
of expressions analogous to Rayleigh’s equation related
to bubble growth by evaporation of suspended liquid
surrounding the bubble.

The temperature at the internal surface of the liquid
is equal to the temperature of saturation of the eva-
porating liquid, a heat flux of constant density is flowing
from the surrounding liquid to the liquid sheath.

Rayleigh’s equation describing the growth of the
bubble when evaporation occurs over the whole in-
ternal surface takes the following form:

[R.le 3(dR‘):’

ol de? 2 dr /o

where o, is the surface tension at the evaporating
liquid-vapour boundary.

From the solutions of this equation presented in
[8-10] it follows that the form of the function R(z) can
be assumed to be as folows:

2(71 (6)
= Pw— -
PR

R = ZN[‘,(}XI,/VTZ}I 2 ‘7)
where
Nia=pr, Cp (T~ T)p,.- L

T, being theinternal temperature of superheated liquid
and 7; the temperature of saturation.

Some authors, depending on the assumptions taken,
give solutions somewhat different from the form (7).
Nonetheless the relationship always takes the following
form:

R=C-'2 (7a)

The differences concern the value of C.
As has already been mentioned equation (6) deals
with the growth of the bubble in the case of evaporation
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from the whole surface of the sphere. In our case, eva-
poration takes place from a part of the surface, that is
from a layer of suspended liquid whose surface area is
univocally determined by the opening angle f§. Intro-
ducing this modification into equation (6) we get a form
analogous to equation (7a) with a somewhat different
coefficient C. From the energy balance of the expanding
system, it can be shown that the opening angle over
the whole range of evaporation is a constant. From
the values of opening angle observed by Sideman [2],
the error due to the above mentioned simplification
does not exceed the range of variability of the constant
C as obtained from different solutions of equation (6).

The rate of radius change is determined from

equation (7)
dR B N (3 1/2 (8)
a7\

Let us now discuss equation (2).

This equation is valid for the time range ¢, —t where
to is the starting time of system and ¢ is the time of
complete evaporation.

The sum of expressions

P $TR3 - m(t) = mo

on the LHS of equation (2) is equal to the initial
mass of the drop and, during evaporation, is a constant.

By introducing the quantity my into equation (2) and
transforming it we obtain:

2p mR3/ dt

_2p1gR , 39(p1,—pr)

3dR
R dr

=2 17
97 182 2o07R 0
3 - 1+ t
439, —p)+cosfle ¢ o)
PL, PL R

Since R is a time function [relationship (7) and
equation (9)] it will be non-linear in the general case
because of 1, which makes its solution complicated. In
order to avoid this difficulty let us examine the ex-
pression

3m0
2pLmR?

3
where mg = py, 3nR*

and R* represents the initial radius of drop, then:

3m0 _ 2an <R* 3
200mR> T pp \R)
The value of expression (10) for the liquids discussed

and for an evaporation ¢ > 297 is not bigger than 0.03.
Neglecting the component

(10)

3]’}10
2pLnR3

we are making an error of approximately 3%, of the
coefficient value at dV/d¢. After this simplification the
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initial equation (2) will take the form:

dV 3dR
TR /4
dt R dr
g 2P R, 3glpr, —puVo
= 1.82¢ 2pLnR?
3 - 1 B)-p ¢
+ g(pr, —pL)(1+cos f) ¢L (1,
I)L,,'/)L R

Incorporating into equation (11) the relationship (7),
and transforming it, we obtain:

dv , ,
g IV KA R L M = 0

(12)
where:

4Ny, [3a\12
K:_,G Py
182\ =

g
3 gvo
L= —(pp—p)o D0
5 Pl TP GN, 3 G2

3(L+cos ) plpr, —p1)

M= — 12
4pr, pLNsa(30/m)

Initial condition:

g 3 1/2
V|t=tu = N.In<—"> .
Tito

Equation (12) of the Ricatti type with the condition (13)
is a univocally formulated differential problem. In the
general case, however, it is not analytically solvable
[11]. The problem was, therefore, solved using Merson’s
procedure with the help of an Odra 1204 computer.
The obtained curve V = V(t) is regular, and for times
t > 0.5s it is flat.

Since in direct experimental measurements one gets
the curve of time-dependence of position, it would be
more convenient to compare these data with the
numerical solution of the form H = H{t).

The curve is obtained by numerical differentiation
of the solution of V = V(r} in the form:

(13)

!

H(t) = Ho+j V(t)dr (14)

to
where Hy is the position at the instant of separation
from the capillary.

RESULTS AND DISCUSSION

Our experimental verification of theoretical results
covered systems with different physico-chemical pro-
perties of the liquids examined for different super-
heating values of the evaporating liquid. The numerical
solutions obtained were compared with experimental
data given in [2] from where the results obtained for
the evaporation of pentane in water for two different
superheating values had been taken. The numerical
solutions were also compared with the authors’ own
data obtained from experiments conducted using the
apparatus whose diagram is presented in Fig. 2(a,b).

The liquid comprising the continuous phase fills a
glass cylinder (Fig. 2a) to a certain level. The tem-
perature of the liquid is equalized and stabilized by
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FIG. 2(a). Diagram of measuringapparatus:(1)continuous phase;(2)evaporat-
ing drop; (3) adiabatic jacket; (4) thermostat and (5) thermo-couples.

FIG. 2(b). Optical recording system: (1) source of light; (2) photo-tube;
(3) time recorder; (4) measurement of light line position and (5) collimator
of light.

means of the thermostat, 4. The heat losses into the
surroundings are compensated for by applying a ther-
mal jacket, 3. The temperature in the whole volume
of the continuous phase is controlled using a thermo-
couple circuit, 3. To the continuous phase prepared in
this way a drop of evaporating liquid pre-heated to

boiling point is introduced. While vaporizing the drop o) 1 CuH ~HO AT=LTC
o Faraar =l

is moving upwards. Its motion is recorded by an optical (9) I CHp—H.0 AT=29°C

i i i (a) 2CCL~H0 AT=20°C
sygtem (Flg. 2b). The optical system is composed of .the ) BRI AT-ot - —
pairs: light source—photo-tube connected to a time . (3G HgHO AT=20%C

recorder, 3. The evaporating drop while crossing the (®) FC HeHP AT=120°C
T

light line interrupts the circuit thus stopping the time

meter. The results were obtained in the form of the = 3 / //

relationship: system position-time. In their own ex- )

periments the authors of this paper examined two l

systems: water—hexane and water—carbon tetrachloride l
L

,  mm

each at two temperatures of superheating. Due to a
difference in physicochemical properties (Table 1) of
the phase forming the drop, the systems seem to be
sufficiently representative for drawing conclusions as to |
the degree of generalization of the derived equation. 0 ‘T

The experimental classification is presented on the dia- 1

gram of Fig. 3. The straight lines in the logarithmic | |
coordinate system represent the numerical solutions; L. oy 55

t, s

the points marked represent the results of experiments.
The experimental time-dependence of position of the FiG. 3. Time-dependence of position of bubble-
evaporating drop was approximated in the logarithmic suspended liquid system.

Table 1. Physico-chemical data of the systems corresponding to the curves 1, 2 and 3

No. Cp Pv oL PL, 3 Vo 1. 1;
1 0.591 0.0031 0.9933 0.5763 891074 224-1073 310.9 309.3
2 0.208 0.0051 0974 1.482 74-10% 7.3-1073 3517 349.7
3 0.570 0.0028 09778 0.9590 93-10°* 7.3-1073 344.1 342.1

85.3
45.7
80.5
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Table 2
No. 1 1 2 2 3 3
Pexpt. 1.20 1.13 1.08 1.14 0.95 0.71
theory  1.32 1.09 1.15 1.10 0.89 0.65
Bexpt. 195 288 196 205 115 108
Biheory 230 200 208 180 108 100

coordinate system with a straight line applying the
method of least squares. The method of linear re-
gression allows to establish that through the points
determined by experiment one can draw a straight
line. If we assume that the time-dependence of position
of the evaporating drop may be represented by the
expression (1) then in order to compare experiment
with theory it is enough to check the values of co-
efficients B and p for the correlation lines and theo-
retical lines. Such a comparison is shown in Table 2.
As can be seen from the comparison, the theoretical
description of the motion of the evaporating drop using
equation (12)is in good agreement with the real motion
of the evaporating drop.

REFERENCES

1. A. Selecki and L. Gradon, Uber den Verdampfungs-
mechanismus eines sich in einer nicht mischberen

929

Flissigkeit bewegenden Flissigkeitstropfens, Chemie-
Ingr-Tech. 44(18), 1077 (1972).

. S. Sideman and Y. Taitel, Direct-contact heat transfer

with change of phase evaporation of drops in an im-
miscible liquid medium, Int. J. Heat Mass Transfer
7, 1273 (1964).

. S. Sideman and Y. Gat, Direct contact heat transfer

with change of phase: spray-column Studies of a three-
phase heat exchanger, A.L.Ch.E.JI 12(2), 296 (1968).

. A. Adamson, Physical Chemistry of Surfuces {(in Polish).

PWN, Warsaw (1963).

. R.R. Hughes and R. Gilliland, The mechanics of drops,

Chem. Engng Progr. 48(10). 497 (1952).

. V. G. Levich, The motion of gas bubbles (in Russian),

Zh. Eksp. Teoret. Fiz. 19, 18 (1949).

. V. G. Levich, Physicochemical Hydrodynamics (in

Russian). Izol. Akad. Nauk. SSR, Moscow (1952).

. M. S. Plesset and S. A. Zwick, The growth of vapor

bubbles in superheated liquids. J. Appl. Phys. 25(4), 493
(1954).

. H. K. Foster and N. Zuber, Growth of a vapor bubble

in a superheated liquid, J. Appl. Phys. 25(4), 474

(1954).

. L. E. Scriven, On the dynamics of phase growth,

Chem. Engng Sci. 10, 1 (1959).

. J. Pictrowski, Ordinary Differential Equations (in Polish).

PWN, Warsaw (1967).

. P.Yuda and D. E. Jame, The motion of vapor bubbles

growing in uniformly superheated liquids. A.J.Ch.E.JI
17(6), 1452 (1971).

EQUATION DU MOUVEMENT D'UNE GOUTTE DE VAPEUR
EN EXPANSION AU SEIN D'UN LIQUIDE NON MISCIBLE

Résumé—En s’appuyant sur la description proposée par Sideman de I'évaporation interne d’une goutte

avec formation d’une enveloppe liquide suspendue a la partie inférieure de la bulle en expansion, une

équation est formulée qui décrit le mouvement d'un tel systéme. L’équation est résolue numeériquement

et les résultats comparés a la fois aux données expérimentales tirées de [2] et aux résultats expérimentaux
obtenus par l'auteur. On trouve un bon accord entre théorie et expérience.

BEWEGUNGSGLEICHUNG FUR EINE EXPANDIERENDE DAMPFBLASE
IN EINER NICHT MISCHBAREN FLUSSIGKEIT

Zusammenfassung—Unter Beniitzung der von Sideman vorgeschlagenen qualitativen Beschreibung des
Mechanismus der inneren Verdunstung eines Tropfens mit gleichzeitiger Bildung einer im unteren Teil
der expandierenden Blase aufgehidngten Fliissigkeitshiille wurde eine Gleichung abgeleitet, die solch ein
System beschreibt. Diese Gleichung wurde mittels numerischer Methoden gelost. Die errechneten
Ergebnisse wurden mit den experimentellen Daten aus der Arbeit [2] und eigenen verglichen.

Es wurde eine gute Ubereinstimmung der errechneten und der experimentalen Ergebnissen festgestellt.

VPABHEHUE ABVDKEHWSA PACTYUIETO ITV3LIPLKA TIAPA B
HECMEWKWBAIOIENCA XXWNJIKOM CPEAE

Annoramus — Ha OCHOBaHMHM Ka4YeCTBEHHOTO ONMCAHMA NPOLECCA UCMAPEHHA BHYTPb IBHXKYLUEHCS
Karun, gasnoro CalizeMaHoM, BEIBEIEHO aHATUTHYECKOE YPaBHEHME IBUKEHUSA PaCTYILEIO My3bipbKa
C INEHKOK KHUAKOCTH, PACIIONOKEHHOM B €r0 HHXKHEH YacTH.

VYpaBHeHHe pEIICHO YHCICHHBIME METONaMHM. Pe3ynbTaThl pacy€TOB CpPaBHHMBAOTCS C 3KCIEpU-
MEHTAJIbHBIMHY faHHbiMu Caltiemana [2] ¥ aBTOpOB naHHO#M paboThi.
Honyqeno X0poumee COOTBETCTBHE MEXOyY pac‘léTHbIMPl H ONbLITHBIMH JAHHBLIMMU,



